Anterior Lumbar Interbody Fusion; A prospective, unmasked, nonrandomized study of 240 patients utilizing a PEEK® Optima ALIF cage.

4th International PEEK Meeting Washington DC

25-26th April 2019

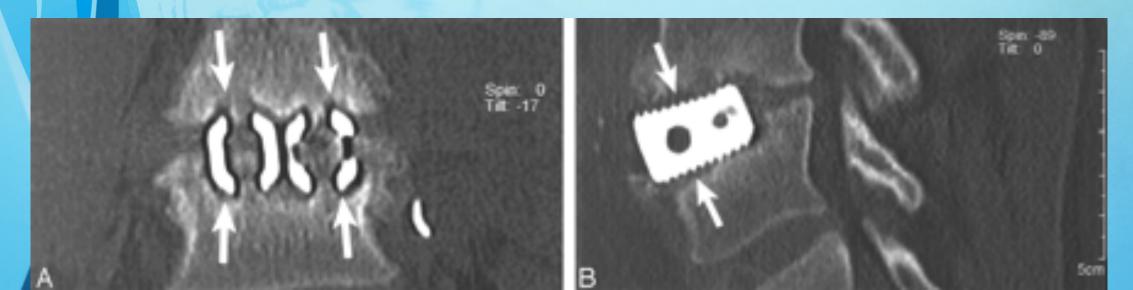
Conflicts of Interest

ROYALTIES; DEPUY, PRISM CONSULTANCIES; NIL STOCKS (MEDICAL); NIL OPTIONS; NIL GRANT/RESEARCH SUPPORT; NIL

- CLBP leading cause of work absenteeism, disability and QOL reduction
- >400,000 spinal fusions per year in the US
- 2017 83% of fusions in the US involved use of an IBF device

Why do we fuse?

Fundamental principle of treatment is spinal fusion surgery. Fusion is directly correlated with improved patient outcomes.

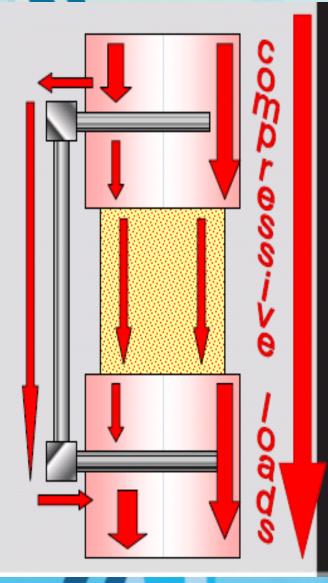


 Most common materials used for interbody fusion devices are Titanium (Ti) and its alloys or polymer (polyetheretherketone-PEEK)

 IBF function is mechanical. Requires the addition of other materials to achieve bony fusion

TiAlloy - Introduced in the 1980's
 Positive
 Results supportive of fusion but difficult to assess
 Negative
 Stress shielding = Modulus Mismatch

Reports of high subsidence rates



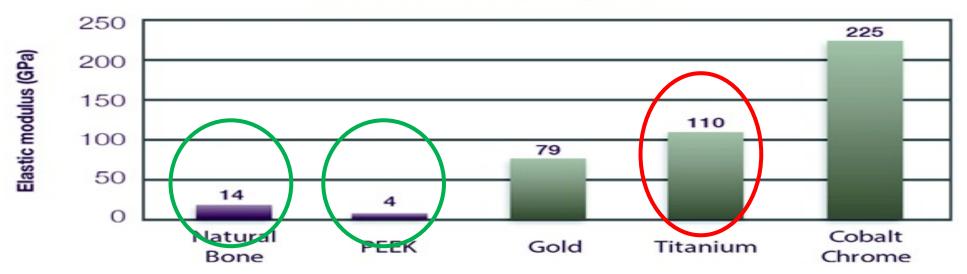
 Alternative material was sought for IBF devices that supported improved clinical outcomes

- Improved fusion rates
- Optimal post-op assessment of fusion mass
- Reduced subsidence rates

Introduced in the 1990s - PEEK

Material History - PEEK

• Excellent radiographic signature


Wolff's Law

 Modulus similar to human bone = Load sharing

Material - PEEK vs TiAlloy

Property	Titanium	PEEK
	Intallian	
Elasticity (Stiffness)	Higher	Lower
Radio-density	Radiopaque	Radiolucent
Modulus of Elasticity (Young's Modulus)	103-110GPa	3-4GPa
Biocompatabilty (risk of allergic reaction)	Higher	Lower
Osseointegration	Higher	Lower

Elastic Modulus Comparison

Rho, JY (1993). "Young's modulus of trabecular and cortical bone material". Journal of Biomechanics 26 (2): 111-119.

Material - PEEK vs TiAlloy

TS SIF Journal of Clinical Neuroscience 44 (2017) 23-29

Revi Tita	Contents lists available at ScienceDirect Journal of Clinical Neuroscience Journal homepage: www.elsevier.com/locate/jocn Review article Titanium vs. polyetheretherketone (PEEK) integrate Statistically significant					
Me	ta-analysis and review of th		nce rates PEEK			
Subsidence Rates		16-35% (22%)	0-28% (10.8%)			
Fusion Rates	46.51-100% (82.5%) 76-100% (89.3%)					
Author/year	Subsidence, n (%)					
	Ti	PEEK	Ti	PEEK		
Tanida, 2016	77 (82.8)	41 (80.4)	-	-		
Nemoto, 2014	23 (100)	19 (76)	8 (35)	7 (28)		
Chen, 2013	29 (100)	31 (100)	17 (34.5)	5 (5.4)		
Cabraja, 2012	41 (93.2)	37 (88.1)	9 (20.5)	6 (14.3)		
Niu, 2010	32 (86.5)			0(0)		
Chou, 2008	20 (46.51)	15 (100)	7 (25.9)	0(0)		

Material - PEEK vs TiAlloy

Li et al. BMC Musauloskeletal Disorders (2016) 17:379 DOI 10.1186/s12891-016-1234-1

BMC Musculoskeletal Disorders

Open Access

CrossMark

RESEARCH ARTICLE

Is PEEK cage better than titanium cage in anterior cervical discectomy and fusion

 Surgery? A I
 Titanium
 PEEK

 Zhi-jun Li¹⁺⁺, Yao Wang²⁺,
 Fusion Rate 12/12
 75% (31/124)
 94.6% (5/91)

 Subsidence Rate 12/12
 15.6% (33/211)
 5.9% (11/184)

 Eur Spine J (2013) 22:1539–1546 DOI 10.1007/s00586-013-2772-y
 Statistically significant subsidence rates
 Statistically significant

Comparison of titanium and polyetheretherketone (PEEK) cages in the surgical treatment of multilevel cervical spondylotic myelopathy: a prospective, randomized, control study

W	ith ove	er 7-		Titanium	PEEK
	u Chen•Xi aisong Yang		Fusion Rate	100%	100%
			Subsidence Rate	34.5%	5.4%

Material - PEEK

• The use of PEEK in the anterior spine promoted both mechanical and radiological advantages.

 Combined with bone graft, excellent fusion results with statistically significant reduced subsidence rates.

So why are we trying to modify PEEK?

Innovation in a space where there is a paucity of invention?

"Evidence doesn't matter. Everyone wants a set of new golf clubs.."

Why modify PEEK?

 PEEK has recently attracted negative reports for its biologically inert or hydrophobic properties, thus limiting good integration with adjacent bone.

Technical Note

PEEK-Halo effect in interbody fusion

Kevin Phan^{a,b}, Jarred A. Hogan^b, Yusuf Assem^b, Ralph J. Mobbs^{a,b,*}

^a Neuro Spine Clinic, Suite 7a, Level 7 Prince of Wales Private Hospital, Barker Street, Randwick, NSW 2031, Australia
^b NeuroSpine Surgery Research Group (NSURG), Sydney, NSW, Australia

Current Strategies to Improve the Bioactivity of PEEK

Rui Ma and Tingting Tang *

Getting PEEK to Stick to Bone: The Development of I PEEK for Interbody Fusion Devices

F. Brennan Torstrick¹, David L. Safranski, Ph.D.², J. Kenneth Burkus, M.D.⁴ Chappuis, M.D., F.A.C.S.⁴, Christopher S.D. Lee, Ph.D.⁵, Robert E. Guldberg, Gall, Ph.D⁶, and Kathryn E. Smith, Ph.D.²

> SPINE Volume 40, Number 6, pp 399-404 ©2015, Wolten Kluwer Health, Inc. All rights reserved.

"(PEEK)..may

inhibit successful

fusion"

pine

EPIDEMIOLOGY

nplant Materials Generate Different Peri-implant flammatory Factors

Poly-ether-ether-ketone Promotes Fibrosis and Microtextured Titanium Promotes Osteogenic Factors

Rene Olivares-Navarrete, DDS, PhD,* Sharon L. Hyzy, MS,* Paul J. Slosar, MD,† Jennifer M. Schneider, MS,‡ Zvi Schwartz, DMD, PhD,*§ and Barbara D. Boyan, PhD*¶

Material Evolution - PEEK

 Methods to "improve" the osseointegration profile of PEEK have been hea

Material Evolution?

However, are our efforts as effective as intended?

Are we improving patient outcomes by modifying the physical, radiological and mechanical properties of PEEK?

Are the reported bio-inert properties of PEEK a 'real' clinical issue?

Evidence – Animal/In-vitro Studies

14 studies reviewed

 Results substantiated the improved osteoconductivity properties of modified PEEK devices compared to PEEK controls in animal/invitro studies

> = Or **≠** Practical Efficacy

Evidence – Human Studies

Eur Spine J DOI 10.1007/s00586-015-4353-8

REVIEW ARTICLE

Radiological and clinical outcomes of novel Ti/PEEK combined spinal fusion cages: a systematic review and preclinical evaluation

```
Yusuf Assem<sup>1,2,3</sup> · Ralph J. Mobbs<sup>3,4,5</sup> · Matthew H. Pelletier<sup>2</sup> · Kevin Phan<sup>3,4</sup> · William R. Walsh<sup>2</sup>
```

• 2015

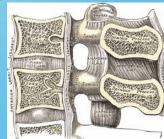
Conclusion

- Clinical Outcomes = no significant difference b/w groups
- "Clinical studies at this stage exhibit similar fusion rates for Ti/PEEK compared to PEEK"

Evidence – Human Studies

	Mobbs et al	Hoppe et al	Kotsias et al	Rickert et al	Phan et al	Sclafani et al	Chong et al
# of pts	15	42	50	18	47	44	25
Device	Composite PEEK/TI ALIF (Ti endplates)	Composite Ca/PEEK TLIF+PSF	Conclusion; NO statistical significant	Ti Coated PEEK TLIF+ PSF	Composite Ti-PEEK ACDF (Ti Endplates)	TiCoated PEEK ALIF ± PSF	Composite Ti-PFFK All subjects received
Fusion Rate Subsidence Rate	BMP & Allograft. 2 x PSF 15%	93.6%	difference -	91 7% Conclusion; NO statistical	96% 8.3%	77% 75% subjects	iliac crest BMA
Patient Satisfaction	93% good- excellent	90.4% satisfied	88% good- excellent	significant differences	92% good- excellent	received PSF	92% good- excellent
Follow up	18 months	24-39 months	18 months	12 months	7.9 months	7.3 months (± 2.3)	12months

Evidence – Human Studies


	Chong	Hoppe	Kotsias	Phan	Rickert	Sclafani	Mobbs
VASB pre					7.2		7.9
VASB final					3.6		1.8
VASB imp					3.6	5.2	6.1
MCID					25	2.5	2.5
VASN pre	7.1			?			
VASN final	2		Rol	bust			
VASN imp	4.6		Clir	nical			
VASL pre			Da	ata 🛌	6		
VASL final					3.7		
VASL imp					2.3	4.8	
MCID					2.5	2.5	
ODI pre					42		
ODI final					27		
ODI imp					15		34.3
MCID					12.8		12.8
NDI pre	44		38	47			
NDI final	26.4		12	22			
NDI imp	24.7		26	25			

Evidence – Recent Studies

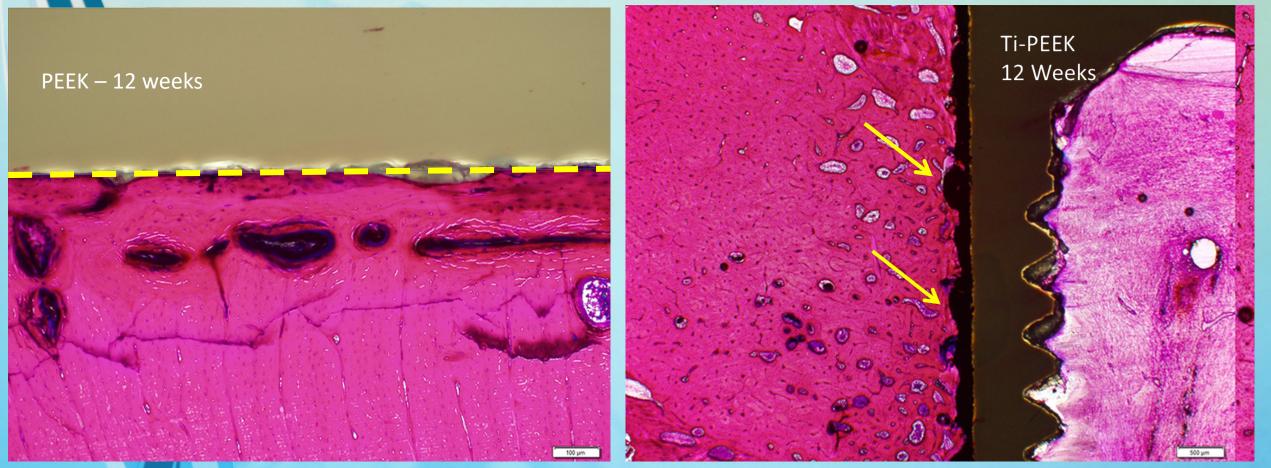
- 2019 UNSW Orthopaedic Research Labs presented at SSA 2019 (Walsh)
- Ti-PEEK vs PEEK Pre-Clinical Ovine Long Bone Ongrowth Model (4, 12 and 26 weeks)
 - To bond or not to bond to Bone?

- Cancellous vs cortical model
 - Which one is predictive of human interbody fusion space?

Histology - 4 weeks

PEEK – Cortical implantation

4 weeks


GAP BETWEEN BONE AND THE PEEK AT 4 WEEKS

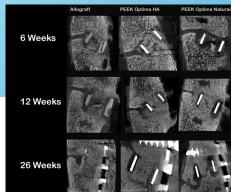
100 µm

FIBROUS TISSUE

Ti- PEEK – Cortical implantation 4 weeks

Histology – 12 weeks

 In a cortical model bone CAN grow onto both PEEK and TiPEEK


Histology – 26 weeks

Parameter	Group	6 weeks	12 weeks	26 weeks
New bone	Allograft	2.6 ± 0.9	2.0 ± 0.8	1.8 ± 1.0
	PEEK Optima HA	2.0 ± 0.8	2.8 ± 0.5	3.0 ± 0.0
	PEEK Optima Natural	1.0 ± 0.0	3.0 ± 0.0	3.0 ± 0.0
Quality	Allograft	1.2 ± 1.3	0.5 ± 0.6	0.8 ± 1.5
	PEEK Optima HA	1.0 ± 1.4	1.5 ± 1.3	1.8 ± 1.0
	PEEK Optima Natural	0.0 ± 0.0	0.8 ± 1.0	1.8 ± 1.5
Contact	Allograft	1.8 ± 1.3	1.3 ± 1.5	2.0 ± 1.2
	PEEK Optima HA	0.5 ± 0.6	1.5 ± 1.0	1.3 ± 0.5
	PEEK Optima Natural	0.0 ± 0.0	0.5 ± 0.6	1.0 ± 1.4

CT grading results

- All fusions remodelled with time and were mature by 26weeks
- Higher resorption rate with Allograft

Does PEEK/HA Enhance Bone Formation Compared With PEEK in a Sheep Cervical Fusion Model?

Study comments...

- Anatomical site, surgical technique, graft material and loading play vital role in in-vivo response
- Cortical model limited in application to human pathology – implants contained in closed defect and are not under load.
- Bone ingrowth and fixation in cortical and cancellous sites in long bones DOES <u>NOT</u> translate directly to in-vivo interbody fusions.
- Bone remodeling process dictates where the bone will grow.

Evidence - Context

- Animal/in-vitro evidence does not appear to support invivo evidence
 - 100% pre-clinical animal studies reviewed used long bone preparation sites (Tibia/Femur)
- Recent pre-clinical research
 - Testing conditions possibly not reflective of in-vivo interbody conditions
 - Full defect fill (dowel defect) and not under load
- Lack of human studies/data supporting "better" patient related outcomes or fusion rates

The GOLD Standard for successful fusion

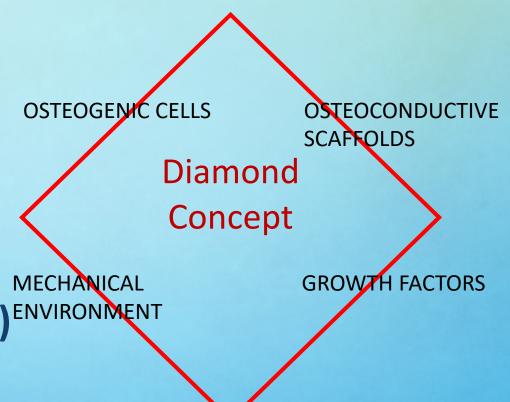
Diamond Concept

>All 4 points are embraced for physiological healing

Biological Environment

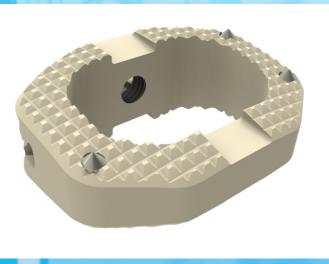
Patient factors

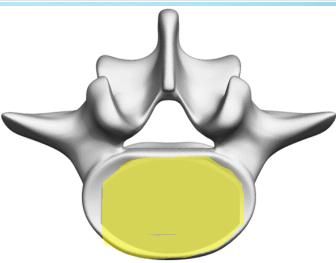
Surgical Preparation

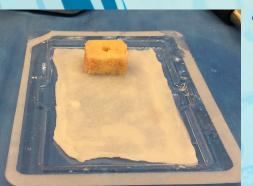

≻Graft

Mechanical Environment

Surgical Preparation


> Patient factors


> Device factors (material) ENVIRONMENT


Mechanical - device design

Design Feature	Benefit
Large Footprint	Maximize vertebral endplate coverage – PL corners optimized
PEEK-Optima LT1	Optimal modulus elasticity = load sharing Optimal radiographic assessment of fusion
Minimal wall thickness	Optimize bone graft-endplate contact Optimize bone graft volume
Large Open Architecture – no strut	Optimize bone graft-endplate contact Optimize bone graft volume
Endplate Spikes	Initial stability/prevent migration

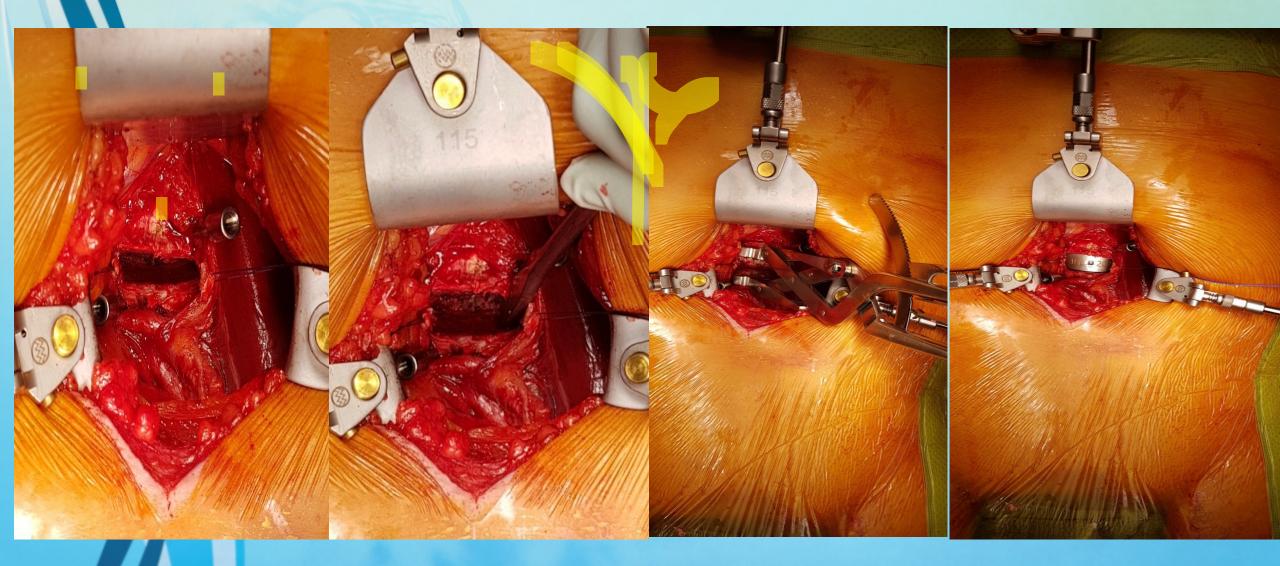
Tissue Engineering and product development

- Bone Restoration/Regeneration
 - Osteoconductive tricortical femoral head allograft
 - Osteoinductive Bone Morphogenic Proteins/Bone Growth factors
 - ➢Osteogenesis
- Mechanical environment
- Stability, proximity, viability

- Prospective, unmasked, non-randomized study
- 240 pts
 - 360 Fusion Levels
- 12mth f/up
- 1 independent centre, 2 surgeons
- Diagnosis
 - Clinical history
 - Clinical examination
 - Diagnostic imaging
 - Nerve Conduction Studies (EMG)
 - Baseline PROMs ODI/VASB/VASB/RMDQ


Inclusion Criteria

- >18 years/skeletally mature
- L2-S1 operative pathology
- Lumbar pathology at 1 or > levels with/out radicular pain
- Failed conservative care >6 months
- Willing/able to comply with f/up requirements


Exclusion Criteria

- Treatment outside L2-S1
- Prior anterior spinal surgery
- Local or systemic active infection
- pregnancy

- All pts
 - Anterior Lumbar Interbody Fusion (Australis[®] ALIF cage + plate)
 - rhBMP-2 wrapped through and around prefashioned structural allograft (femoral head)

SURGICAL TECHNIQUE

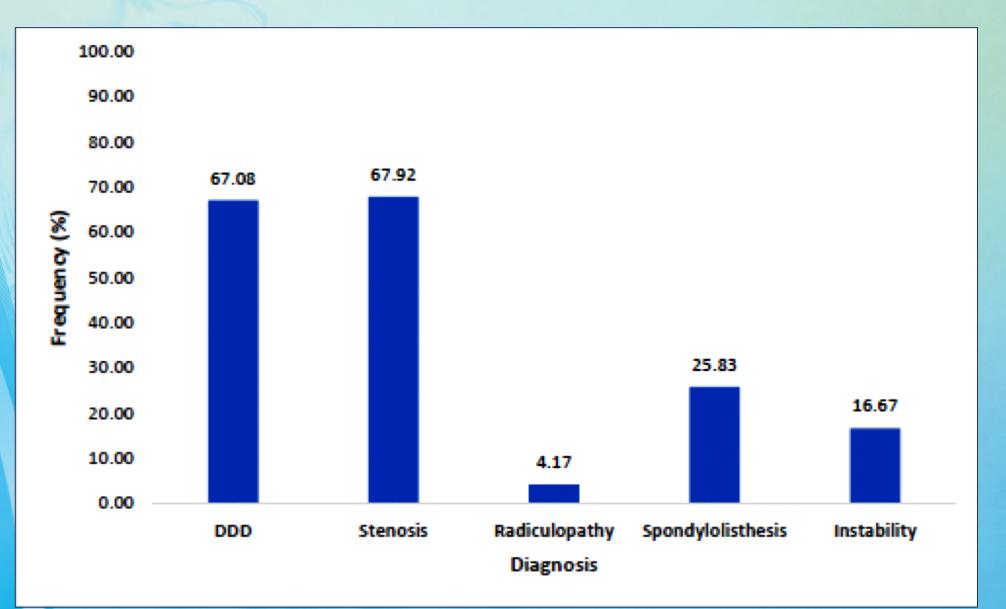
• F/up baseline, 3, 6, 12 months

Fusion acceptance criteria

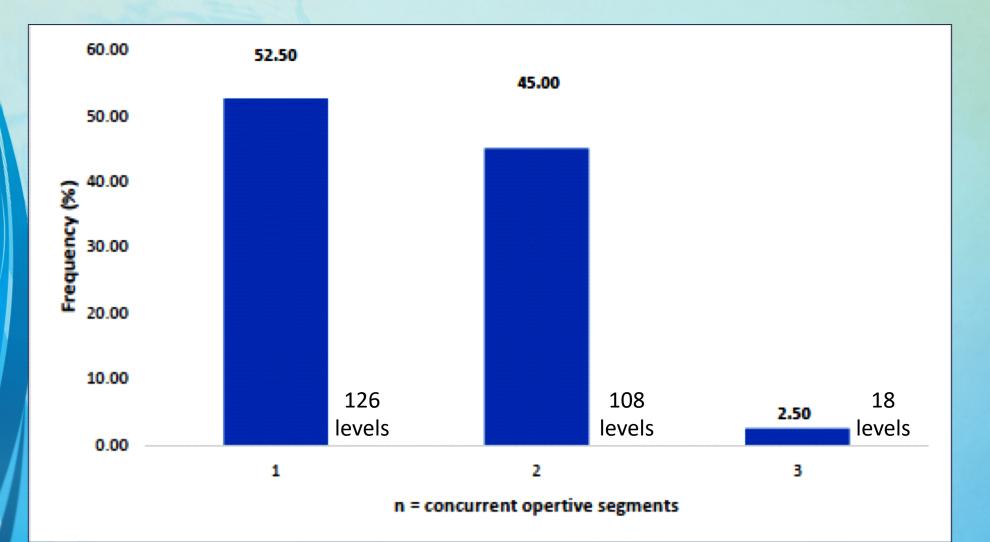
- Confluence of bridging bone by fine cut CT imaging
- 0° movement on flexion/extension films
 - ALL PATIENTS MUST MEET BOTH CRITERIA TO QUALIFY

Reoperation/ revision /removal / complication rates

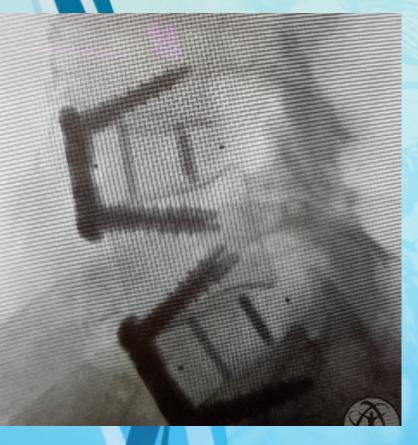
Statistical Analysis

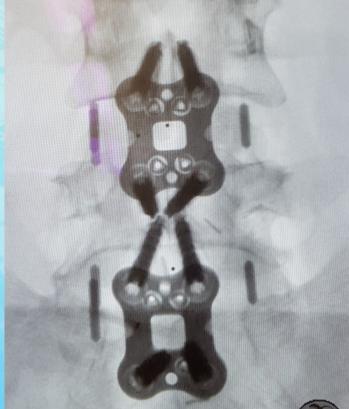

 Conducted on all PROMs using one-tailed paired Student's t-test

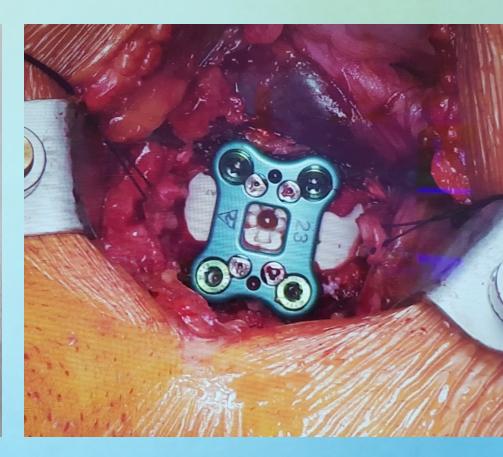
Analyses and comparison at all timepoints 0-12 months


Outcomes analyses for SS, MCID and SCB

Raw data tabulated and graphical representation


Primary Diagnosis




Operative Levels

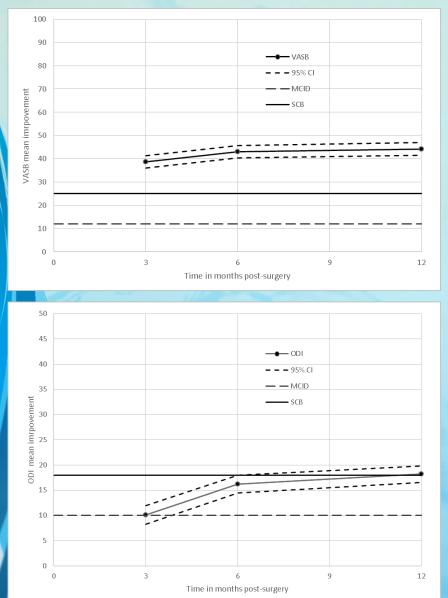
Constructs

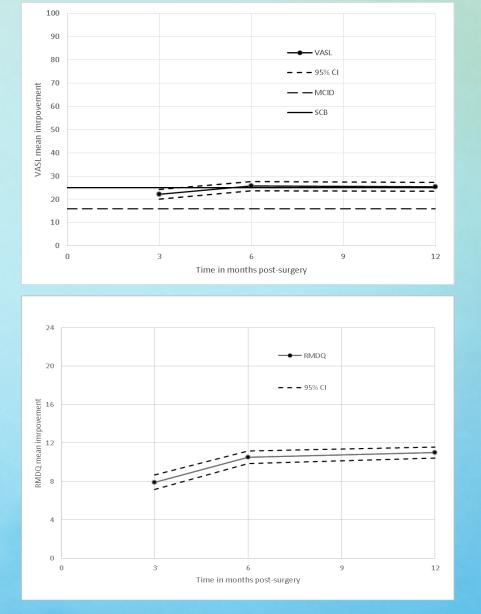
Mean VASB and VASL

	VAS Outcome								
Back Pain									
Time Post- Surgery,	n	MEAN	n	MEAN Difference	95%CI	P score (<0.05)			
0, Baseline	240	65.4	NA	NA	NA	NA			
3 months	235	26.4	235	38.7	2.63	<0.0001			
6 months	235	22.1	235	43	2.66	<0.0001			
12 months	221	20.8	221	44.2	2.77	<0.0001			
		Leg Pa	in (combined R a	nd L Leg)		•			
Time Post- Surgery,	n	MEAN	n	MEAN Difference	95%CI	P score (<0.05)			
0, Baseline	240	38.4	NA	NA	NA	NA			
3 months	235	15.6	235	22.2	2.04	<0.0001			
6 months	234	12.3	234	25.7	1.98	<0.0001			
12 months	219	11.9	219	25.4	1.96	<0.0001			

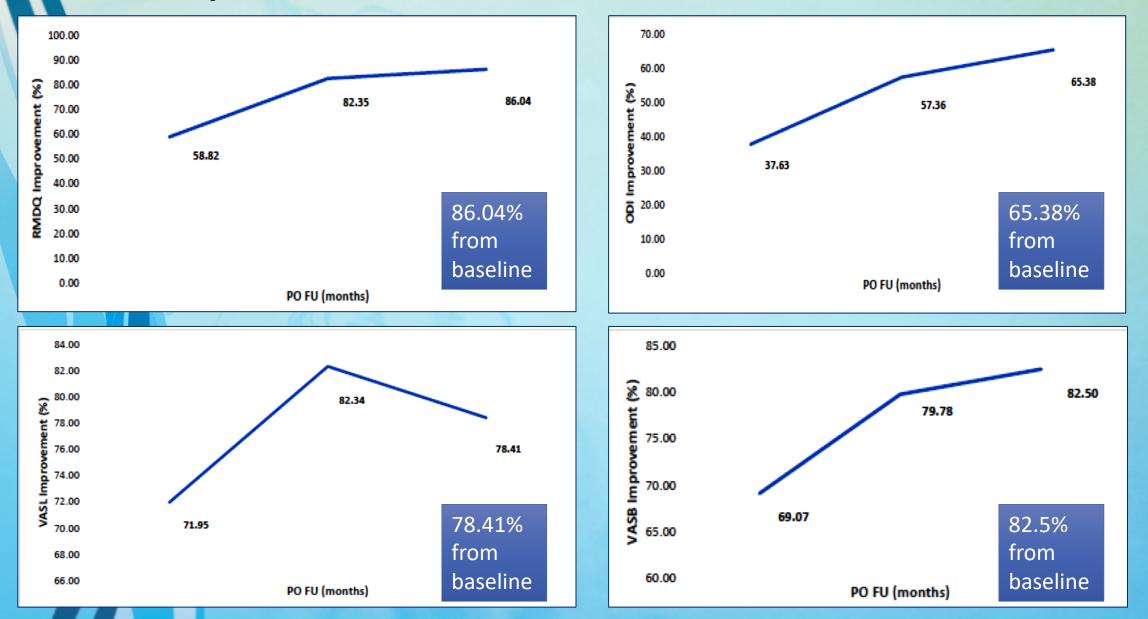
95% CI was calculated for the one-tailed Students T-test using the formula $x \pm z s/\sqrt{n}$ where 'x' is sample median, z score

was 1.64 for a 90% CI, 's 'was sample standard deviation and 'n 'the number of participants.

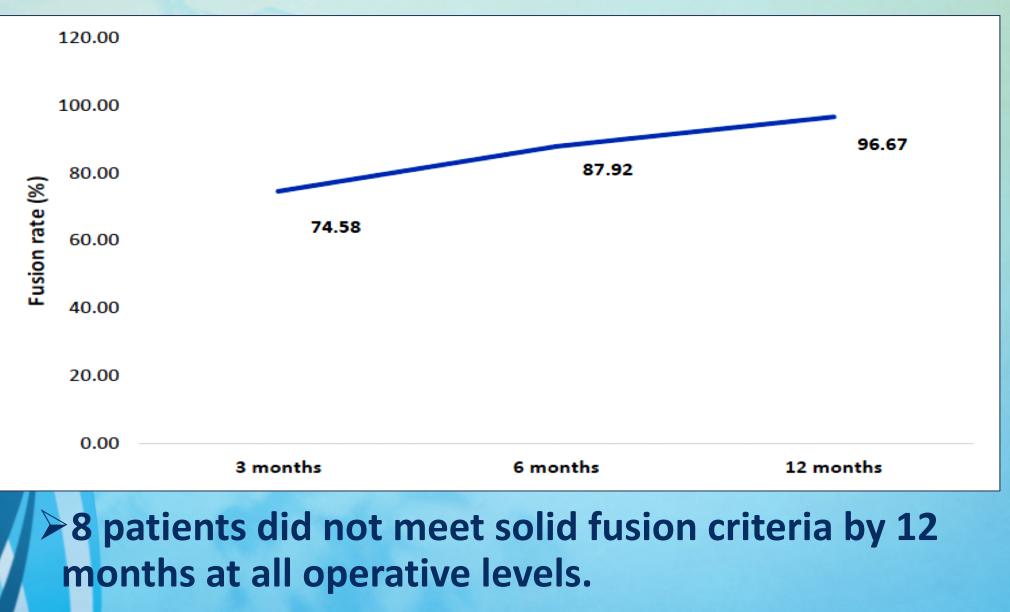

Mean ODI and RMDQ


ODI							
Time Post-	n	MEAN	n	MEAN	95%CI	P score (<0.05)	
Surgery,				Difference			
0, Baseline	240	32.1	NA	NA	NA	NA	
3 months	234	21.6	234	10.1	1.87	<0.0001	
6 months	234	15.9	234	16.2	1.74	<0.0001	
12 months	217	14	217	18.2	1.63	<0.0001	
RMDQ							
Time Post-	n	Mean	n	Mean	95%CI	P score (<0.05)	
Surgery,				Difference			
0, Baseline	240	15.2	NA	NA	NA	NA	
3 months	233	7.3	233	7.9	0.76	<0.0001	
6 months	231	4.8	231	10.5	0.66	<0.0001	
12 months	218	4	218	11	0.56	<0.0001	

95% CI was calculated for the one-tailed Students T-test using the formula $x \pm z s/\sqrt{n}$ where 'x' is sample median,

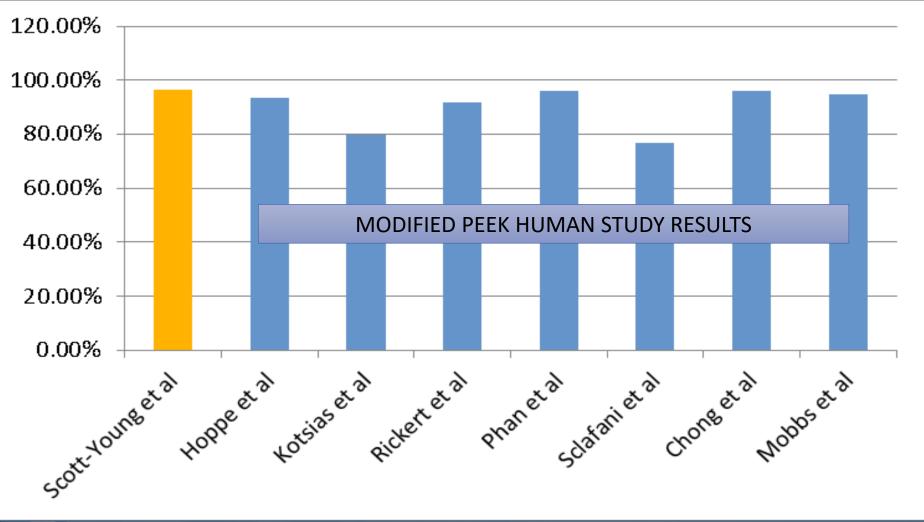

z score was 1.64 for a 90% CI, 's' was sample standard deviation and 'n' the number of participants.

Results



% improvements

Fusion% n = 240



Results

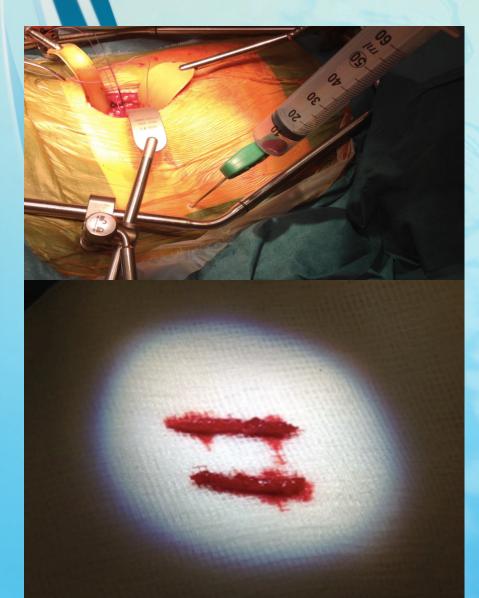
AE/Complication	Total AE/Complication	Total % (n = 240)
Vessel Injury	2	0.83%
#ALIF cage - intraoperative	1	0.41%
#Plate Lock – intraoperative	1	0.41%
Subsidence <5mm	1	0.41%
TOTAL	4	2.08%

- No post op revisions of primary constructs
- No post op reports of cage migration or construct failure
- Total loss to f/up = 7.9% (n=19)

Scott-Young et al vs Evidence - %Fusion

• Methods of radiographic analysis are not homogenous and often poorly defined.

Scott-Young et al - Fusion



UK cohort - ISASS2018

- Northumbria NHS Trust, Mr A Kasis, Mr C Jensen
- Shortage of BMP led to alternative source
- Same meticulous surgical technique
- ALIF PEEK cage with ALIF Plate
- Same grafting technique based on Diamond Concept
 - Meticulous surgical technique
 - Structural femoral head allograft
 - BMP substituted with Autograft (ICBG) MIS harvesting technique using Jamshidi needle

UK Cohort - Results

- 50 consecutive patients
- 53 levels in total
- L4-S1 ALIF
- Results
 - 98% radiological fusion (52 levels)
 - No complications from donor site reported

Conclusion

- Look for robust data to support clinical interventions = EBM
- Currently a paucity of evidence to support the clinical effectiveness of modified PEEK devices
- In-vivo assessment methods can vary results difficult to compare outcomes
- Literature Review No statistical significance was demonstrated between groups Study vs Control
- Current study demonstrates robust fusion results @96%/12mths with statistically significant PROMs
- Diamond concept = successful fusion and patient related outcomes
- When modifying devices patient related improvements should be paramount

gold coast **spine**

THANK YOU

Second St.

SURF RESCUE

60000